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Abstract

The geodesic structure of standard static space–times is studied and conditions are found which
imply nonreturning and pseudoconvex geodesic systems. As a consequence, it is shown that if
the Riemannian factor manifoldF satisfies the nonreturning property and has a pseudoconvex
geodesic system and if the warping functionf : F → (0,∞) is bounded above then the standard
static space–timef (a, b)× F is geodesically connected.
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1. Introduction

Warped product manifolds were introduced in general relativity as a method to find
general solutions to Einstein’s field equations[6,19]. Two important examples include
generalized Robertson–Walker space–times and standard static space–times. The former are
obviously a generalization of Robertson–Walker space–times and the latter a generalization
of the Einstein static universe. In this paper we focus on the geodesic structure of standard
static space–times.

We recall that a warped product can be defined as follows[6,19]. Let (B, gB) and(F, gF )
be pseudo-Riemannian manifolds and also letb : B → (0,∞) be a smooth function. Then
the (singly) warped product,B × bF is the product manifoldB × F furnished with the
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metric tensorg = gB ⊕ b2gF defined by

g = π∗(gB)⊕ (b ◦ π)2σ∗(gF ),

whereπ : B × F → B and σ : B × F → F are the usual projection maps and∗
denotes the pull-back operator on tensors. A standard static space–time can be considered
as a Lorentzian warped product where the warping function is defined on a Riemannian
manifold called the fiber and acting on the negative definite metric on an open interval of
real numbers, called the base. More precisely, a standard static space–time,f (a, b)× F is
a Lorentzian warped product furnished with the metricg = −f 2 dt2 ⊕ gF , where(F, gF )
is a Riemannian manifold,f : F → (0,∞) is smooth, and−∞ ≤ a < b ≤ ∞. In [19], it
was shown that any static space–time is locally isometric to a standard static space–time.

Standard static space–times have been previously studied by many authors. Kobayashi
and Obata[17] stated the geodesic equation for this class of space–times and the causal
structure and geodesic completeness were considered in[2], where sufficient conditions
on the warping function for nonspacelike geodesic completeness of the standard static
space–time were obtained (see also[20]). In [1], conditions are found which guarantee that
standard static space–times either satisfy or else fail to satisfy certain curvature conditions
from general relativity. The existence of geodesics in standard static space–times have been
studied by several authors. Sánchez[23] gives a good overview of geodesic connectedness in
semi-Riemannian manifolds, including a discussion for standard static space–times. Results
on the existence of geodesics in two-dimensional standard static space–times are stated in
[12,13]. Additional references on geodesic connectedness and the existence of multiple
geodesics andt-periodic geodesics in static space–times include[10,11,14,15,21,22].

Two of the most famous examples of standard static space–times are Minkowski space–
time and the Einstein static universe[6,16] which isR × S

3 equipped with the metric

g = −dt2 + (dr2 + sin2r dθ2 + sin2r sin2θ dφ2),

whereS
3 is the usual three-dimensional Euclidean sphere and the warping functionf ≡ 1.

Another well-known example is the universal covering space of anti-de Sitter space–time,
a standard static space–time of the formfR × H

3, whereH
3 is the three-dimensional

hyperbolic space with constant negative sectional curvature and the warping functionf :
H

3 → (0,∞) defined asf(r, θ, φ) = coshr [6,16]. Finally, we can also mention the
exterior Schwarzschild space–time[6,16], a standard static space–time of the formfR ×
(2m,∞) × S

2, whereS
2 is the two-dimensional Euclidean sphere, the warping function

f : (2m,∞) × S
2 → (0,∞) is given byf(r, θ, φ) = √

1 − 2m/r, r > 2m and the line
element on(2m,∞)× S

2 is

ds2 =
(

1 − 2m

r

)−1

dr2 + r2(dθ2 + sin2θ dφ2).

This paper is organized as follows. InSection 2we give the formal definition of standard
static space–times and state the geodesic equations for these space–times. In addition, we
recall several definitions that are needed in later sections, including the definitions of a
pseudoconvex geodesic system, and the disprisoning, unitrace and nonreturning properties
for a manifold with linear connection. InSection 3we present our results on the geodesic
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structure of standard static space–times. InTheorem 3.1we show that the standard static
space–timef (a, b) × F satisfies the nonreturning property if the Riemannian factorF

satisfies the nonreturning property. We state two different results which provide sufficient
conditions for a standard static space–time to have a pseudoconvex geodesic system. In
Theorem 3.2we show that if the Riemannian manifold(F, gF ) is compact thenf (a, b)×F

has a pseudoconvex geodesic system independent of the warping functionf . In Theorem
3.3we show that if(F, gF ) has a pseudoconvex geodesic system and the warping functionf

is bounded above thenf (a, b)×F has a pseudoconvex geodesic system. As a consequence
of these results, we are able to show inCorollary 3.5that if (F, gF ) has a pseudoconvex
geodesic system and is nonreturning and if the warping functionf is bounded above then
f (a, b)×F is geodesically connected. Geodesic connectedness is the property that arbitrary
points of the space–time can be joined by a geodesic.Corollary 3.5can be compared with the
result in[10] in which it is shown that a standard static space–time is geodesically connected
if the Riemannian manifoldF is complete and the warping function satisfies 0< inf (f) �
sup(f) < ∞. Corollary 3.5stands as a peer with the theorem in[10] in that there are
complete Riemannian manifolds which fail to be geodesically pseudoconvex and there are
geodesically pseudoconvex and nonreturning Riemannian manifolds which are incomplete.

2. Preliminaries

In this section, we first give a formal definition of standard static space–times and state
the geodesic equations for a standard static space–time.

Definition 2.1. Let (F, gF ) be a Riemannian manifold and also letf : F → (0,∞) be
a smooth map where−∞ ≤ a < b ≤ ∞. Then the standard static space–timeM =
f (a, b) × F is the product of((a, b),−dt2) and (F, gF ) furnished with the metricg =
−f 2 dt2 ⊕ gF .

Here,(F, gF ) is called the fiber andf is called the warping function. A standard static
space–time is said to be trivial if the warping functionf is constant.

Now we will recall the geodesic equations for a curveγ = (α, β) : I → (a, b)× F in a
standard static space–time. These equations are special cases of the geodesic equations for
a general warped product stated in[19].

Proposition 2.2. A smooth curveγ = (α, β) : I → (a, b) × F in a standard static
space–time of the formM = f (a, b)× F with the metricg = −f 2 dt2 ⊕ gF is a geodesic
if and only if the following hold:

1. α′′ = −2

f ◦ β
d(f ◦ β)

dt
α′,

2. β′′ = −(f ◦ β)(α′)2∇F (f)|β(t),
where∇F (f) denotes for the gradient of f on F.

Remark 2.3. If γ = (α, β) is a geodesic in a standard static space–time, then−(f ◦
β)4(α′)2 ≡ C is constant (see page 208 of[19]) and−(f ◦ β)2(α′)2 + gF (β

′, β′) ≡ D,
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i.e., the constant speed of the geodesic. Moreover,α turns out to be a pre-geodesic on(a, b)
with the metric−dt2.

The concept of apseudoconvex geodesic system, and thedisprisoning, unitrace, and
nonreturningproperties of a manifold with a linear connection have been used in a series
of papers[3–5,7–9]to study the geodesic structure of such manifolds. In particular, results
on the space of geodesics, geodesic connectedness, and Cartan–Hadamard type theorems
have been established. We will be using these concepts in this paper and now will recall
the definitions and briefly discuss some key facts. We state the definitions for an arbitrary
space–time(M, g).

A space–time(M, g) isgeodesically pseudoconvexif for each compact setK inM there is
a compact setH such that each geodesic segmentα : [a, b] → M, withα(a), α(b) ∈ K satis-
fiesα[a, b] ⊆ H . The space–time(M, g) isdisprisoningif for each inextendible geodesicα :
(a, b) → M andt0 ∈ (a, b) both the setsα(a, t0] andα[t0, b) fail to have compact closure.
The space–time(M, g) isunitraceif for eachp inM and each neighborhood ofV of p there
is a simple convex neighborhoodU of pwithU ⊆ V such that any geodesic which entersU

either leaves and never returns or retraces the same path every time it does return. Finally, the
space–time(M, g) is nonreturningif each pointp ofM has arbitrarily small neighborhoods
U(p) such that any geodesic starting inU(p) and leavingU(p) fails to return toU(p).

Clearly, if (M, g) satisfies the nonreturning property, then(M, g) also satisfies the dis-
prisoning property[5] and the unitrace property[7]. In [4], it is shown that if(M, g) is both
geodesically pseudoconvex and disprisoning and also(M, g) has no conjugate points, then
(M, g) is geodesically connected and for each pointp ∈ M the map expp : Tp(M) → M

is a diffeomorphism and henceM is diffeomorphic toR
n, wheren = dim(M). In [5] it

is shown that if(M, g) satisfies the nonreturning property then the property of geodesic
pseudoconvexity is equivalent to the space of geodesics of(M, g) being Hausdorff. In[7]
it is shown that if(M, g) is unitrace and the space of geodesics is Hausdorff then(M, g) is
geodesically connected. Combining these results we see that if(M, g) is nonreturning and
geodesically pseudoconvex then it is geodesically connected.

Beem has applied the above ideas in the setting of Lorentzian warped products(M, g) of
the formM = (a, b)× hF with the metricg = −dt2 ⊕h2gF , whereh : (a, b) → (0,∞) is
smooth. These warped products are sometimes called generalized Robertson–Walker space–
times[13]. In [9] it is proven that if(F, gF ) satisfies the nonreturning property and has a
pseudoconvex geodesic system and there existt1, t2 ∈ (a, b)with t1 < t2 such thath′ ≥ 0 on
(a, t1) andh′ ≤ 0 on(t2, b) then (i)(a, b)×hF satisfies the nonreturning property and has a
pseudoconvex geodesic system, (ii) the space of geodesics of(a, b)×hF is a 2s-dimensional
Hausdorff manifold where dim(F) = s, and (iii) (a, b)× hF is geodesically connected.

3. Geodesic system

In this section, we consider the geodesic system of standard static space–times. We
consider the disprisoning property and pseudoconvexity of standard static space–times and
establish sufficient conditions for geodesic connectedness and for the space of geodesics to
be a Hausdorff manifold.
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Note that(a, b) with the metric−dt2 satisfies the nonreturning property and also it has a
pseudoconvex geodesic system. We will apply techniques used in the proof ofTheorem 3.2
of [9] and modify it by interchanging the roles of the basis and fiber to prove the following
result.

Theorem 3.1. Let M = f (a, b) × F be a standard static space–time with the metric
g = −f 2 dt2 ⊕ gF . Then(M, g) satisfies the nonreturning property if and only if(F, gF )
satisfies the nonreturning property.

Proof. It is known that standard static space–times are stably causal[2], and hence strongly
causal. Thus, each point off (a, b)× F has sufficiently small neighborhoods such that any
causal geodesic leaving such a neighborhood fails to return. Assume that the standard
static space–time(M, g) does not satisfy the nonreturning property. Then there is some
point (t0, p0) in M such that arbitrarily small neighborhoods exist containing this point
and each such neighborhood has geodesics which leave and return. For sufficiently small
neighborhoods, the geodesics that leave and return must be space-like.

Recall that geodesics inf (a, b) × F project underπ to pregeodesics of((a, b),−dt2)
but that they may possibly be constant geodesics of(a, b). By Proposition 2.2andRemark
2.3, we see that space-like geodesicsγ = (α, β) that haveα′(s0) = 0 for somes0 ∈ (a, b)

will haveα′(s) ≡ 0 andβ(s) will be a geodesic of(F, gF ). It is impossible that a geodesic
γ of this type can leave arbitrarily small neighborhoods ofM and return since then the
geodesicβ of (F, gF )would leave arbitrarily small neighborhoods ofF and return, thereby
violating the nonreturning property of(F, gF ). Thus, any space-like geodesicγ = (α, β)

which leaves arbitrarily small neighborhoods of(t0, p0) in M and returns must be of the
form α′(s) �= 0 for all s ∈ (a, b) andα′(s) will not change sign.

Suppose thatW(t0, p0) is a convex normal neighborhood of(t0, p0) in M containing
space-like geodesics which leaveW(t0, p0) and return toW(t0, p0). By the remarks in
the previous paragraph, the projection of any such geodesic underπ into (a, b) must be a
nonconstant pregeodesic in((a, b),−dt2). One can choose a convex normal neighborhood
U(t0) in (a, b) such that any geodesic of((a, b),−dt2) which leavesU(t0) must fail to
return because of the nonreturning property of((a, b),−dt2). Without loss of generality, we
assume thatU(t0) ⊆ π(W(t0, p0)). Note that space-like geodesics off (a, b)×F starting in
W(t0, p0)∩π−1(U(t0)) project to pregeodesics which leaveU(t0) and fail to return. Hence,
the corresponding space-like geodesics starting inW(t0, p0) ∩ π−1(U(t0)) may not return
toU(t0)× F . This shows thatf (a, b)× F must be nonreturning.

The implication that if(M, g) is nonreturning then(F, gF ) is nonreturning follows easily
from the observation that ifβ is a geodesic in(F, gF ) then, for a fixedt0 ∈ (a, b), γ(t) =
(t0, β(t)) is a geodesic in(M, g). �

Now we consider sufficient conditions to obtain geodesic pseudoconvexity of standard
static space–times. The first theorem requires no condition on the warping function but a
rather strong condition on the Riemannian manifold(F, gF ).

Theorem 3.2. Let M = f (a, b) × F be a standard static space–time with the metric
g = −f 2 dt2 ⊕ gF . If (F, gF ) is compact then the standard static space–time(M, g) has a
pseudoconvex geodesic system.
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Proof. Let K be a compact set inM and letH be the compact setπ(K) × F . Suppose
γ = (α, β) : [0,1] → M is an arbitrary geodesic in(M, g) such thatγ(0) andγ(1) are in
K. Thenα : I → (a, b) is a pregeodesic in((a, b),−dt2) such thatα(0) andα(1) are in
π(K). By Remark 2.3, α′(s) cannot change sign and hence,α[0,1] ⊆ π(K). It follows that
γ[0,1] ⊆ H . �

In the case(F, gF ) is not compact but is pseudoconvex thenf (a, b) × F may fail to be
pseudoconvex. For example, universal anti-de Sitter space–timefR × H

3 whereH
3 is the

three-dimensional hyperbolic space andf : H
3 → (0,∞) is defined asf(r, θ, φ) = coshr

fails to be timelike pseudoconvex[8]. However, we can state the following.

Theorem 3.3. Let M = f (a, b) × F be a standard static space–time with the metric
g = −f 2 dt2 ⊕ gF . If (F, gF ) has a pseudoconvex geodesic system andsup(f) < ∞ then
the standard static space–time(M, g) has a pseudoconvex geodesic system.

Proof. We will again modify the proof ofTheorem 3.2in [9] by interchanging the roles
of the basis and fiber to conclude that nonspacelike geodesics satisfy pseudoconvexity as
follows: letW be an arbitrary compact set inM and also letγ = (α, β) : [0,1] → M be
a nonspacelike-like geodesic in(M, g) with endpointsγ(0), γ(1) in W . Sinceα : [0,1] →
(a, b) is a pregeodesic in((a, b),−dt2) with endpointsα(0), α(1) in the compact setπ(W)
in (a, b) and by using the pseudoconvexity of((a, b),−dt2), one can find a compact set
U in (a, b) such thatα[0,1] is contained inU. Note thatV = σ(W) is compact inF , and
henceU × V is compact inM. Every nonspacelike-like geodesic starting inU × V fails
to return toU × V because if it did then the time functionT(t, p) = t for the standard
static space–time(M, g) would not be monotonic along the nonspacelike-like geodesics.
Hence, any nonspacelike geodesic with both endpoints inW must remain in the compact
setU × V . Now, we will consider the pseudoconvexity of space-like geodesics. Letγ =
(α, β) : I → (a, b)× F be a spacelike geodesic whereI is a closed and bounded interval.
Theng(γ ′, γ ′) ≡ D > 0 onI andα is a pregeodesic and hence(α′)2 < k for some positive
numberk > 0 onI. ThusgF (β′, β′) < D+ (sup(f))2k2 < ∞ and this implies thatβ must
be contained in a compact set inF because otherwisegF (β′, β′) = ∞. Hence spacelike
geodesics also satisfy pseudoconvexity. �

Example 3.4. Notice that in order to obtain the above result the assumption that(F, gF ) has
a pseudoconvex geodesic system cannot be dropped, as the following example shows. Let
M be the standard static space–timef (a, b)×F , whereF is a Riemannian manifold chosen
to be not pseudoconvex andf is arbitrary. To be specific, we can choose(a, b) = R, F to
be the punctured planeR2 − (0,0), andf ≡ 1. Let the compact setK be the (Euclidean)
unit circle in the punctured plane centered at the origin and in the planet = 0 ofM. If we
consider all spacelike geodesic segments with endpoints inK, they will include all curves
of the formγ(t) = (0, β(t)), whereβ(t) is a straight line geodesic segment in the punctured
plane joining two points ofK. No compact set inM contains all such geodesic segments
and hence,M is not spacelike pseudoconvex.
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As our final result, we state sufficient conditions for the space of geodesicsG(M) [7] of a
standard static space–time to be a Hausdorff manifold and to obtain geodesic connectedness.
First recall that if an arbitraryn-dimensional manifold(M, g) is nonreturning then it is
unitrace (see[7]) and also disprisoning (see[5]).

Corollary 3.5. Let M = f (a, b) × F be a standard static space–time with the metric
g = −f 2 dt2 ⊕ gF . Suppose that(F, gF ) satisfies the nonreturning property and has a
pseudoconvex geodesic system. If sup(f) < ∞ then

1. The space of geodesics of the standard static space–time(M, g), i.e., G(M) is a
2s-dimensional Hausdorff manifold wheredim(F) = s.

2. The standard static space–time(M, g) is geodesically connected.

Proof. First, it immediately follows fromTheorems 3.1 and 3.3that the standard static
space–time(M, g) is both nonreturning and pseudoconvex and hence unitrace and dispris-
oning as mentioned above. Then by Corollary 5.6 in[5], the space of geodesics,G(M) is a
2s-dimensional Hausdorff manifold where dim(F) = s. Thus one can apply Theorem 4.2
in [7] to obtain the geodesic connectedness of(M, g). �

Remark 3.6. Using variational methods it has been shown[10] that if the Riemannian
manifoldF is complete and the warping function satisfies 0< inf (f) � sup(f) < ∞ then
f (a, b) × F is geodesically connected. In[18] it is shown that the condition 0< inf (f)
can be dropped. There are Riemannian manifolds that are geodesically pseudoconvex and
nonreturning yet fail to be complete. The simplest example is an open proper convex subset
of R

n with the usual Euclidean metric. On the other hand, there are Riemannian manifolds
which are complete yet fail to be geodesically pseudoconvex[3]. Hence,Corollary 3.5is
neither a special case of the result in[10] nor does it imply that result. Furthermore, the
imposed conditions in[10,18] imply that the space–times are globally hyperbolic yet the
hypotheses inCorollary 3.5do not imply global hyperbolicity.

Remark 3.7. The fact that there are Riemannian manifolds which are complete and not
geodesically pseudoconvex together with the result from[10] referred to inRemark 3.6
shows that the sufficient conditions for geodesic connectedness inCorollary 3.5are not
necessary conditions.
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